360 {\ Deg}成像最近遭受了很大的关注;然而,其角度分辨率比窄视野(FOV)透视图像相对较低,因为它通过使用具有相同传感器尺寸的鱼眼透镜而被捕获。因此,它有利于超声解析360 {\ DEG}图像。已经制造了一些尝试,但大多数是常规的投影(ERP),尽管尽管存在纬度依赖性失真,但仍然是360 {\ DEG}图像表示的方式之一。在这种情况下,随着输出高分辨率(HR)图像始终处于与低分辨率(LR)输入相同的ERP格式,当将HR图像转换为其他投影类型时可能发生另一信息丢失。在本文中,我们提出了从LR 360 {\ Deg}图像产生连续球面图像表示的新颖框架,旨在通过任意360 {\ deg}预测给定球形坐标处的RGB值。图像投影。具体地,我们首先提出了一种特征提取模块,该特征提取模块表示基于IcosaheDron的球面数据,并有效地提取球面上的特征。然后,我们提出了一种球形本地隐式图像功能(SLIIF)来预测球形坐标处的RGB值。这样,Spheresr在任意投影型下灵活地重建HR图像。各种基准数据集的实验表明,我们的方法显着超越了现有方法。
translated by 谷歌翻译
图像缝线旨在缝合从不同的观点拍摄的图像到与更广泛的视野的图象。现有方法使用估计的扭曲函数将目标图像翘曲到参考图像,并且同情是最常用的翘曲功能之一。然而,当由于相机的非平面场景和平移运动导致图像具有大的视差时,同性特性不能完全描述两个图像之间的映射。基于全局或​​本地同类估计的现有方法不存在来自此问题的不含问题,并且由于视差而受到不期望的伪影。在本文中,而不是依赖于基于同位的扭曲,我们提出了一种新颖的深度图像拼接框架,利用像素 - 明智的横田来处理大视差问题。所提出的深度图像拼接框架由两个模块组成:像素 - 明智的翘曲模块(PWM)和缝合图像生成模块(SIGMO)。 PWM采用光学流量估计模型来获得整个图像的像素方面的翘曲,并通过所获得的跨场重新恢复目标图像的像素。 SIGMO将翘曲的目标图像和参考图像混合,同时消除了诸如损害缝合结果的合理性的未对准,接缝和孔的不需要的伪影。为了培训和评估所提出的框架,我们构建了一个大规模数据集,包括具有相应像素的图像对的图像对,该图像对进行映像对实际翘曲和样本缝合结果图像。我们表明,所提出的框架的结果与传统方法的结果优于常规方法,特别是当图像具有大视差时。代码和建议的数据集即将公开发布。
translated by 谷歌翻译
In this paper, we learn a diffusion model to generate 3D data on a scene-scale. Specifically, our model crafts a 3D scene consisting of multiple objects, while recent diffusion research has focused on a single object. To realize our goal, we represent a scene with discrete class labels, i.e., categorical distribution, to assign multiple objects into semantic categories. Thus, we extend discrete diffusion models to learn scene-scale categorical distributions. In addition, we validate that a latent diffusion model can reduce computation costs for training and deploying. To the best of our knowledge, our work is the first to apply discrete and latent diffusion for 3D categorical data on a scene-scale. We further propose to perform semantic scene completion (SSC) by learning a conditional distribution using our diffusion model, where the condition is a partial observation in a sparse point cloud. In experiments, we empirically show that our diffusion models not only generate reasonable scenes, but also perform the scene completion task better than a discriminative model. Our code and models are available at https://github.com/zoomin-lee/scene-scale-diffusion
translated by 谷歌翻译
The deep neural network (DNN) models for object detection using camera images are widely adopted in autonomous vehicles. However, DNN models are shown to be susceptible to adversarial image perturbations. In the existing methods of generating the adversarial image perturbations, optimizations take each incoming image frame as the decision variable to generate an image perturbation. Therefore, given a new image, the typically computationally-expensive optimization needs to start over as there is no learning between the independent optimizations. Very few approaches have been developed for attacking online image streams while considering the underlying physical dynamics of autonomous vehicles, their mission, and the environment. We propose a multi-level stochastic optimization framework that monitors an attacker's capability of generating the adversarial perturbations. Based on this capability level, a binary decision attack/not attack is introduced to enhance the effectiveness of the attacker. We evaluate our proposed multi-level image attack framework using simulations for vision-guided autonomous vehicles and actual tests with a small indoor drone in an office environment. The results show our method's capability to generate the image attack in real-time while monitoring when the attacker is proficient given state estimates.
translated by 谷歌翻译
Iris segmentation is the initial step to identify biometric of animals to establish a traceability system of livestock. In this study, we propose a novel deep learning framework for pixel-wise segmentation with minimum use of annotation labels using BovineAAEyes80 public dataset. In the experiment, U-Net with VGG16 backbone was selected as the best combination of encoder and decoder model, demonstrating a 99.50% accuracy and a 98.35% Dice coefficient score. Remarkably, the selected model accurately segmented corrupted images even without proper annotation data. This study contributes to the advancement of the iris segmentation and the development of a reliable DNNs training framework.
translated by 谷歌翻译
We study grammar induction with mildly context-sensitive grammars for unsupervised discontinuous parsing. Using the probabilistic linear context-free rewriting system (LCFRS) formalism, our approach fixes the rule structure in advance and focuses on parameter learning with maximum likelihood. To reduce the computational complexity of both parsing and parameter estimation, we restrict the grammar formalism to LCFRS-2 (i.e., binary LCFRS with fan-out two) and further discard rules that require O(n^6) time to parse, reducing inference to O(n^5). We find that using a large number of nonterminals is beneficial and thus make use of tensor decomposition-based rank-space dynamic programming with an embedding-based parameterization of rule probabilities to scale up the number of nonterminals. Experiments on German and Dutch show that our approach is able to induce linguistically meaningful trees with continuous and discontinuous structures
translated by 谷歌翻译
This work proposes a framework developed to generalize Critical Heat Flux (CHF) detection classification models using an Unsupervised Image-to-Image (UI2I) translation model. The framework enables a typical classification model that was trained and tested on boiling images from domain A to predict boiling images coming from domain B that was never seen by the classification model. This is done by using the UI2I model to transform the domain B images to look like domain A images that the classification model is familiar with. Although CNN was used as the classification model and Fixed-Point GAN (FP-GAN) was used as the UI2I model, the framework is model agnostic. Meaning, that the framework can generalize any image classification model type, making it applicable to a variety of similar applications and not limited to the boiling crisis detection problem. It also means that the more the UI2I models advance, the better the performance of the framework.
translated by 谷歌翻译
Human organs constantly undergo anatomical changes due to a complex mix of short-term (e.g., heartbeat) and long-term (e.g., aging) factors. Evidently, prior knowledge of these factors will be beneficial when modeling their future state, i.e., via image generation. However, most of the medical image generation tasks only rely on the input from a single image, thus ignoring the sequential dependency even when longitudinal data is available. Sequence-aware deep generative models, where model input is a sequence of ordered and timestamped images, are still underexplored in the medical imaging domain that is featured by several unique challenges: 1) Sequences with various lengths; 2) Missing data or frame, and 3) High dimensionality. To this end, we propose a sequence-aware diffusion model (SADM) for the generation of longitudinal medical images. Recently, diffusion models have shown promising results on high-fidelity image generation. Our method extends this new technique by introducing a sequence-aware transformer as the conditional module in a diffusion model. The novel design enables learning longitudinal dependency even with missing data during training and allows autoregressive generation of a sequence of images during inference. Our extensive experiments on 3D longitudinal medical images demonstrate the effectiveness of SADM compared with baselines and alternative methods.
translated by 谷歌翻译
Word Sense Disambiguation (WSD) is an NLP task aimed at determining the correct sense of a word in a sentence from discrete sense choices. Although current systems have attained unprecedented performances for such tasks, the nonuniform distribution of word senses during training generally results in systems performing poorly on rare senses. To this end, we consider data augmentation to increase the frequency of these least frequent senses (LFS) to reduce the distributional bias of senses during training. We propose Sense-Maintained Sentence Mixup (SMSMix), a novel word-level mixup method that maintains the sense of a target word. SMSMix smoothly blends two sentences using mask prediction while preserving the relevant span determined by saliency scores to maintain a specific word's sense. To the best of our knowledge, this is the first attempt to apply mixup in NLP while preserving the meaning of a specific word. With extensive experiments, we validate that our augmentation method can effectively give more information about rare senses during training with maintained target sense label.
translated by 谷歌翻译
Video-grounded Dialogue (VGD) aims to decode an answer sentence to a question regarding a given video and dialogue context. Despite the recent success of multi-modal reasoning to generate answer sentences, existing dialogue systems still suffer from a text hallucination problem, which denotes indiscriminate text-copying from input texts without an understanding of the question. This is due to learning spurious correlations from the fact that answer sentences in the dataset usually include the words of input texts, thus the VGD system excessively relies on copying words from input texts by hoping those words to overlap with ground-truth texts. Hence, we design Text Hallucination Mitigating (THAM) framework, which incorporates Text Hallucination Regularization (THR) loss derived from the proposed information-theoretic text hallucination measurement approach. Applying THAM with current dialogue systems validates the effectiveness on VGD benchmarks (i.e., AVSD@DSTC7 and AVSD@DSTC8) and shows enhanced interpretability.
translated by 谷歌翻译